6 research outputs found

    Novel approaches to analysis of the North Star Ambulatory Assessment (NSAA) in Duchenne muscular dystrophy (DMD): Observations from a phase 2 trial

    Get PDF
    Introduction: The North Star Ambulatory Assessment (NSAA) tool is a key instrument for measuring clinical outcomes in patients with Duchenne muscular dystrophy (DMD). To gain a better understanding of the longitudinal utility of the NSAA, we evaluated NSAA data from a phase II trial of 120 patients with DMD treated with domagrozumab or placebo. Methods: The NSAA exploratory analyses included assessment of individual skills gained/lost, total skills gained/lost, cumulative loss of function, and the impact of transient loss of function due to a temporary disability on NSAA total score (temporary zero score). Results: There was no significant difference in the total number of NSAA skills gained (mean 1.41 and 1.04, respectively; p = 0.3314) or lost (3.90 vs. 5.0; p = 0.0998) between domagrozumab- vs. placebo-treated patients at week 49. However, domagrozumab-treated patients were less likely to lose the ability to perform a NSAA item (hazard ratio 0.80, 95% confidence interval [CI]: 0.65–0.98, p = 0.029) over 48-weeks vs. placebo-treated patients. When temporary zero scores were changed to “not obtainable” (8 values from 7 patients), domagrozumab-treated patients scored higher on the NSAA total score versus placebo-treated patients (difference at week 49: 2.0, 95% CI: 0.1–3.9, p = 0.0359). Conclusions: These exploratory analyses reveal additional approaches to interpreting the NSAA data beyond just change in NSAA total score. These observations also highlight the importance of reporting items as “not obtainable” for a patient with a temporary/transient physical disability that impacts their ability to perform the NSAA test

    Quantitative magnetic resonance imaging measures as biomarkers of disease progression in boys with Duchenne muscular dystrophy: a phase 2 trial of domagrozumab

    Get PDF
    Duchenne muscular dystrophy (DMD) is a progressive, neuromuscular disorder caused by mutations in the DMD gene that results in a lack of functional dystrophin protein. Herein, we report the use of quantitative magnetic resonance imaging (MRI) measures as biomarkers in the context of a multicenter phase 2, randomized, placebo-controlled clinical trial evaluating the myostatin inhibitor domagrozumab in ambulatory boys with DMD (n = 120 aged 6 to < 16 years). MRI scans of the thigh to measure muscle volume, muscle volume index (MVI), fat fraction, and T2 relaxation time were obtained at baseline and at weeks 17, 33, 49, and 97 as per protocol. These quantitative MRI measurements appeared to be sensitive and objective biomarkers for evaluating disease progression, with significant changes observed in muscle volume, MVI, and T2 mapping measures over time. To further explore the utility of quantitative MRI measures as biomarkers to inform longer term functional changes in this cohort, a regression analysis was performed and demonstrated that muscle volume, MVI, T2 mapping measures, and fat fraction assessment were significantly correlated with longer term changes in four-stair climb times and North Star Ambulatory Assessment functional scores. Finally, less favorable baseline measures of MVI, fat fraction of the muscle bundle, and fat fraction of lean muscle were significant risk factors for loss of ambulation over a 2-year monitoring period. These analyses suggest that MRI can be a valuable tool for use in clinical trials and may help inform future functional changes in DMD.Trial registration: ClinicalTrials.gov identifier, NCT02310763; registered December 2014

    MLIP causes recessive myopathy with rhabdomyolysis, myalgia and baseline elevated serum creatine kinase

    No full text
    Striated muscle needs to maintain cellular homeostasis in adaptation to increases in physiological and metabolic demands. Failure to do so can result in rhabdomyolysis. The identification of novel genetic conditions associated with rhabdomyolysis helps to shed light on hitherto unrecognized homeostatic mechanisms. Here we report seven individuals in six families from different ethnic backgrounds with biallelic variants in MLIP, which encodes the muscular lamin A/C-interacting protein, MLIP. Patients presented with a consistent phenotype characterized by mild muscle weakness, exercise-induced muscle pain, variable susceptibility to episodes of rhabdomyolysis, and persistent basal elevated serum creatine kinase levels. The biallelic truncating variants were predicted to result in disruption of the nuclear localizing signal of MLIP. Additionally, reduced overall RNA expression levels of the predominant MLIP isoform were observed in patients' skeletal muscle. Collectively, our data increase the understanding of the genetic landscape of rhabdomyolysis to now include MLIP as a novel disease gene in humans and solidifies MLIP's role in normal and diseased skeletal muscle homeostasis

    Nusinersen Versus Sham Control In Infantile-Onset Spinal Muscular Atrophy

    Get PDF
    BACKGROUND & para;& para;Spinal muscular atrophy is an autosomal recessive neuromuscular disorder that is caused by an insufficient level of survival motor neuron (SMN) protein. Nusinersen is an antisense oligonucleotide drug that modifies pre-messenger RNA splicing of the SMN2 gene and thus promotes increased production of full-length SMN protein.& para;& para;METHODS & para;& para;We conducted a randomized, double-blind, sham-controlled, phase 3 efficacy and safety trial of nusinersen in infants with spinal muscular atrophy. The primary end points were a motor-milestone response (defined according to results on the Hammersmith Infant Neurological Examination) and event-free survival (time to death or the use of permanent assisted ventilation). Secondary end points included over all survival and subgroup analyses of event-free survival according to disease duration at screening. Only the first primary end point was tested in a prespecified interim analysis. To control the overall type I error rate at 0.05, a hierarchical testing strategy was used for the second primary end point and the secondary end points in the final analysis.& para;& para;RESULTS & para;& para;In the interim analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (21 of 51 infants [41 %] vs. 0 of 27 [0%], P<0.001), and this result prompted early termination of the trial. In the final analysis, a significantly higher percentage of infants in the nusinersen group than in the control group had a motor-milestone response (37 of 73 infants [51%] vs. 0 of 37 [0%]), and the likelihood of event-free survival was higher in the nusinersen group than in the control group (hazard ratio for death or the use of permanent assisted ventilation, 0.53; P=0.005). The likelihood of overall survival was higher in the nusinersen group than in the control group (hazard ratio for death, 0.37; P=0.004), and infants with a shorter disease duration at screening were more likely than those with a longer disease duration to benefit from nusinersen. The incidence and severity of adverse events were similar in the two groups.& para;& para;CONCLUSIONS & para;& para;Among infants with spinal muscular atrophy, those who received nusinersen were more likely to be alive and have improvements in motor function than those in the control group. Early treatment may be necessary to maximize the benefit of the drug.Wo

    Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy

    No full text
    International audienceBACKGROUND Nusinersen is an antisense oligonucleotide drug that modulates pre-messenger RNA splicing of the survival motor neuron 2 (SMN2) gene. It has been developed for the treatment of spinal muscular atrophy (SMA). METHODS We conducted a multicenter, double-blind, sham-controlled, phase 3 trial of nusinersen in 126 children with SMA who had symptom onset after 6 months of age. The children were randomly assigned, in a 2: 1 ratio, to undergo intrathecal administration of nusinersen at a dose of 12 mg (nusinersen group) or a sham procedure (control group) on days 1, 29, 85, and 274. The primary end point was the least-squares mean change from baseline in the Hammersmith Functional Motor Scale-Expanded (HFMSE) score at 15 months of treatment; HFMSE scores range from 0 to 66, with higher scores indicating better motor function. Secondary end points included the percentage of children with a clinically meaningful increase from baseline in the HFMSE score (>= 3 points), an outcome that indicates improvement in at least two motor skills. RESULTS In the prespecified interim analysis, there was a least-squares mean increase from baseline to month 15 in the HFMSE score in the nusinersen group (by 4.0 points) and a least-squares mean decrease in the control group (by -1.9 points), with a significant between-group difference favoring nusinersen (least-squares mean difference in change, 5.9 points; 95% confidence interval, 3.7 to 8.1; P< 0.001). This result prompted early termination of the trial. Results of the final analysis were consistent with results of the interim analysis. In the final analysis, 57% of the children in the nusinersen group as compared with 26% in the control group had an increase from baseline to month 15 in the HFMSE score of at least 3 points (P< 0.001), and the overall incidence of adverse events was similar in the nusinersen group and the control group (93% and 100%, respectively). CONCLUSIONS Among children with later-onset SMA, those who received nusinersen had significant and clinically meaningful improvement in motor function as compared with those in the control group. (Funded by Biogen and Ionis Pharmaceuticals; CHERISH ClinicalTrials. gov number, NCT02292537.
    corecore